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In a recent investigation by some of us on the spectrum of the uranyl (UO2
2+) ion [Réal, F.; Vallet, V.;

Marian, C.; Wahlgren, U. J. Chem. Phys. 2007, 126, 214302], a sizable difference between CASPT2 and
linear response coupled cluster (LRCC) was observed both with and without the perturbative inclusion of
spin-orbit coupling. This poses a serious question as to which of the two would be more reliable for
investigating molecules containing actinides. In this paper we address this question by comparing CASPT2
and LRCC to a method known to accurately describe the spectra of actinide-containing molecules: the four-
component intermediate Hamiltonian Fock-space coupled cluster (IHFSCC) method, where electron correlation
and spin-orbit coupling are treated on an equal footing. Our results indicate that for UO2

2+ there is little
difference between treatments of spin-orbit coupling, making electron correlation the main cause of
discrepancies. We have found IHFSCC and LRCC to be the most alike in the overall description of excited
states, even though individual LRCC energies are blue-shifted in comparison to IHFSCC due to the difference
in the parametrization of the excited states’ wave functions. CASPT2, on the other hand, shows good agreement
with IHFSCC for individual frequencies but significantly less so for the spectrum as a whole, due to the
difference in the degree of correlation recovered in both cases.

1. Introduction

The chemistry of actinide-containing molecules is a rich and
fascinating subject, in particular because of their spectroscopic
and luminescence properties. The luminescence of uranyl(VI)
UO2

2+ has been extensively studied experimentally both in
aqueous solution and in crystals. However, the assignment of
the energy levels responsible for the strong absorption in the
UV range and the long-lived luminescent state that emits light
in the visible (20 000-26 000 cm-1) range is not trivial.1-3

There have been several theoretical studies in the past decade
on the electronic spectrum of uranyl(VI), either as a bare ion4-7

or coordinated5,6,8,9 to other species, with the 2-fold aim of
comparing theoretical methods and reproducing the experimental
data available in the condensed phase. Theoretical approaches
face several challenges due to the large number of electrons,
which should be treated explicitly, and to the accurate descrip-
tion of the strong interactions of the uranyl with its surroundings
(ligands, host crystals, or solvent molecules). Due to these
interactions, unambiguous comparison between theoretical and
experimental data is often difficult, and it is of interest to obtain
benchmark theoretical data for the bare uranyl ion for which
no experimental data is available.

In order to reach benchmark accuracy different hierarchies
of methods could be applied: one can start from a relativistic
framework, either via four-component10,11 or two-component12,13

treatments, in which spin-orbit is included a priori, and use
multireference coupled-cluster14-17 or configuration interaction
(CI) methods18-21 to treat electron correlation effects. An
alternative is to use a two-step approach. In the first step, the
correlation effect on the states of interest is treated at the spin-
free (SF) level with CI-based methods such as multireference
MRCI22 or complete active space with second-order perturbation
theory CASPT223-25 approaches, or by applying coupled cluster
theory in the framework of response theory.26-29 In the second
step of the calculation, spin-orbit interaction between the
various spin-free states is accounted for by performing spin-orbit
configuration interaction (SOCI) calculations.25,30 The effect of
electron correlation computed in the first step is taken into
account by means of an effective Bloch Hamiltonian.31 The
diagonalization of the total Hamiltonian yields energies and
eigenvectors which take into account both correlation and
spin-orbit effects. All of these methods are rather demanding
and are often replaced by methods that reduce the work in either
the treatment of electron correlation, such as time-dependent
density functional theory (TDDFT), or in the treatment of
relativity, e.g., using pseudopotentials, or both. Most ap-
proximate correlation schemes lack however, the possibility of
systematically improving the description by going to the next
level in a well-defined hierarchy.

In recent theoretical studies on the uranyl(VI) spectrum7,9,32

several theoretical methods have been compared. Within the
TD-DFT scheme, most density functionals do not yield accurate
excitation energies; however, geometries and relaxation energies
of the excited states are in most cases reasonably well described.
Réal and co-workers7 also demonstrated that different wave
function-based methods generally provide qualitatively similar
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results. However, in quantitative terms significant differences
appear between the two methods expected to yield the most
accurate results: CASPT2 and linear response coupled cluster
(LRCC). The LRCC spectrum was blue-shifted in comparison
with that of CASPT2 by about 3000 cm-1 and quite similar to
spectra obtained from multireference CI (MRCI) or averaged-
quadratic coupled-cluster (AQCC) calculations. The only ex-
perimental spectra available are for crystals such as Cs2UO2Cl4

3

or in solution.33 Matsika and Pitzer5 and Pierloot et al.6,9 have
shown that the environment (the equatorial ligands and the rest
of the crystal) may modify the character of the excited states,
apart from changing significantly the transition energies. This
greatly reduces the usefulness of comparing calculated energy
levels for the bare uranyl to experimental values.

The need for understanding the origin of the discrepancies
among wave function based methods in the computed uranyl
energy levels has motivated us to employ the intermediate
Hamiltonian Fock space coupled cluster (IHFSCC) method, a
true multireference coupled cluster method that, in its relativistic
formulation,14-16 allows us to consider spin-orbit coupling and
electron correlation on the same footing. The accuracy of the
relativistic IHFSCC approach has been demonstrated in several
investigations on actinyl species.34-37 Moreover, Fock-space
coupled cluster provides an ideal measure for the relative
accuracy and reliability of both LRCC and CASPT2 because it
is fully size-extensive for both ground and excited states (as
opposed to LRCC, which is formally so only for the ground
state) and includes electron correlation to infinite order (as
opposed to CASPT2, which does so to second order). By
providing a comparison of LRCC and CASPT2 to the accurate
IHFSCC, we complement the picture obtained from previous
studies, since the former have been compared extensively to
more approximate wave function-based methods (e.g., MRCI
and AQCC) and TD-DFT.7,9,32

2. Computational Details

2.1. Fock-Space Coupled Cluster. The calculations of the
excitation spectrum of UO2

2+ were performed with a develop-
ment version of the Dirac08 program,38 using three different
approaches to treat relativity. In the spin-free Dirac-Coulomb
(SFDC)11,39 calculations, we eliminate all spin-orbit coupling
terms to allow for straightforward comparison with earlier
works. This approach is an approximation to the regular
4-component Dirac-Coulomb (DC) calculation, in which only
the usual approximation of (SS|SS) integrals by an a posteriori
correction40 is applied. The third approach concerns the eXact
2-Component (X2C) approach recently introduced by Iliaš and
Saue13 in which spin-orbit coupling is included from the start
via atomic mean-field integrals calculated with the AMFI
code.41,42

In most of the calculations the valence double (DZ) or triple-
� (TZ) basis sets by Dyall43 were used for the uranium atom,
but we also considered the Fægri set,44 that corresponds to triple-
� (TZ) quality in the valence s functions, and quadruple- � (QZ)
or higher quality for the higher angular momenta. For oxygen
we employed the (aug)-cc-VDZ and aug-cc-pVTZ basis sets of
Dunning and co-workers.45 All of these basis sets were kept
uncontracted in all calculations.

The potential energy curves for the symmetric stretch were
sampled at 14 different uranium-oxygen bond lengths (rUO)
within the range rUO ∈ [1.58;1.92] (Å). This ground-state
potential energy curve was described by the Dirac-Coulomb
coupled cluster single and double without (CCSD) and with
perturbative treatment of triples (CCSD(T)) method,46-49 while

the curves for the excited states were obtained within the
IHFSCCSD scheme using the “one particle, one hole” sector
(1h,1p) of Fock space. In the calculations, several active spaces
were tested; only orbitals with orbital energies (in au) ε ∈
[-6.00; 20.00] (34 electrons), [-3.00; 20.00] (24 electrons;
uranium 5d frozen), and [-3.00; 40.00] (24 electrons; testing
the effect of higher lying virtual orbitals) are included in the
correlation treatment. These different active spaces will be
referred to as AS1, AS2, and AS3, respectively.

In Fock-space coupled cluster calculations one should sub-
divide the space spanned by the active orbitals in two subspaces:
the model or P space, containing the active valence orbitals
which are directly involved in the electronic excitations and
the complementary Q space that includes the remaining “cor-
relation-active” orbitals from AS1, AS2 or AS3. In the present
case this translates into including the highest occupied orbitals
(σ1/2u, σ1/2g, π1/2u, π3/2u, π1/2u and π3/2g) and the ten lowest
unoccupied (the nonbonding uranium f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ ,

as well as the antibonding σ1/2u* , σ1/2g* , π 1/2u* , π 3/2u* , π 1/2u* and
π3/2g* ) orbitals in the (P) model space. This space can be extended
by considering in addition the deeper lying occupied orbitals
(6s, 6p, and 5d on uranium and 2s on the oxygens) and/or higher
virtual orbitals (see Figure 1 in ref 3 for a schematic spin-free
picture on the composition of these orbitals).

The intermediate Hamiltonian facilitates such extensions of
the active space by allowing for a further subdivision of the
resulting model space into 2 subspaces, the main model (Pm)
space and an intermediate model (Pi) space that is not dressed
and serves as a buffer between the Pm and Q spaces, thus
alleviating “intruder” state problems. The main model space
Pm (consisting here of 14 electrons and 34 spinors for AS1,
and of 12 electrons and 24 spinors for AS2 and AS3,
respectively) is built solely from excitations within the subset
of main active valence orbitals, whereas every configuration
from the Pi subspace involves at least one intermediate active
valence orbital.

One should realize that accurate solutions are only obtained
for states dominated by Pm components. The undressed Pi space
merely serves as a buffer to eliminate intruder state problems
that make convergence in traditional Fock space approaches
difficult. The scheme employed here is known in literature as
IH2,50,51 but for simplicity we refer to it simply as IHFSCC.
This method forces the Pif Q transition amplitudes of the wave

Figure 1. Potential curves of the uranyl (VI) bare ion along the
symmetric stretching mode computed with the SO-IHFSCC method.
The 1g states are drawn in black, the 2g in red, the 3g in blue, and the
4g in magenta.
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function operator to be zero, which makes the scheme easy and
efficient to use.34,35

2.2. Linear Response CCSD. Calculations with the linear
response CCSD method26-29 were made with the implementation
available in the Dalton 2.0 package.52 These were carried out
to check the influence of uncontracting the basis sets in such
calculations, in order to make the comparison of our current
results and the previous spin-free LR-CCSD work (in which a
contracted atomic natural orbital basis set was used) more
straightforward. The Fægri basis set mentioned above was
thereby used for uranium, along with the cc-pVTZ basis for
oxygen. In this case molecular orbitals were obtained from a
scalar relativistic Hartree-Fock calculation using the Douglas-
Kroll-Hess Hamiltonian.53,54 In the spin-free LR-CCSD cal-
culation, the uranium atomic orbitals below the 6s were kept
frozen as well as the 1s oxygen atomic orbitals, thus correlating
24 electrons. The highest virtual orbitals with energies ε g 40
au were discarded from the orbital correlation space.

2.3. Computational Requirements. Given this range of
different methods employed in the current work it may be of
interest to list some representative computational requirements
for the calculations performed: the one-component correlated
calculations can be performed on a typical Linux cluster with
one processor and about 1 Gb memory, while the requirements
of the four-component DC-IHFSCC go up to 4Gb memory (in
solving the amplitude equations for the different sectors of the
Fock space) and about 80 Gb of disk space (in the transformation
from AO to MO basis, prior to the coupled cluster calculation)
per processor, which are more easily met on a supercomputer.

3. Results and Discussion

3.1. Ground-State Spectroscopic Constants. The spectro-
scopic constants of the ground state of UO2

2+ already provide
information on possible differences between the combinations
of basis sets and Hamiltonians that we wish to compare. The
bond lengths and vibrational frequencies computed with the
(4C-)MP2, (4C-)CCSD and (4C-)CCSD(T) methods are
reported in Table 1 and may be compared to those available in
the literature.6,7,55,56

Our calculations yield U-Oyl bond lengths of 1.724, 1.685,
and 1.703 Å for 4C-MP2, 4C-CCSD, and 4C-CCSD(T),
respectively (from fitting 7 points near the respective minima
with a 4th degree polynomial). It is clear that the inclusion of
triple excitations in the coupled cluster allows for relaxation of
the U-Oyl bonding orbitals, resulting in a slight bond lengthen-
ing (0.02 Å), while the bond distance is overestimated by 4C-
MP2. These results are quite similar to those obtained by de
Jong et al.55 in previous four-component calculations with the
differences of 0.012 Å between the two sets of results likely
arising from the different basis sets used in both studies - those
used here are more flexible than those used by de Jong et al.55

The 4C-MP2 results are also quite similar to those obtained by

Straka et al.56 with a scalar relativistic MP2 calculation, as was
expected since spin-orbit effects are known to be of little
importance for the properties of the uranyl closed-shell ground
state.57,58

The SO-CASPT2 bond lengths6 are shorter by about 0.02 Å
than the 4C-MP2 ones, while they differ by less than 0.005 Å
from the 4C-CCSD(T) values. This is surprising at first glance
as one might expect MP2 and CASPT2 to yield similar results
for the uranyl ground state for which the wave function is
dominated by a single closed-shell determinant.59 Even so, the
ground-state CAS wave function (with an active space including
the six bonding, six antibonding orbitals and four nonbonding
orbitals) computed in the one component framework includes
a significant contribution (about 13%) from double excited
determinants. This leads to higher order excitations in CASPT2,
relative to the MP2 and a better description of electron
correlation, thus bringing the result closer to CCSD(T) accuracy.

Vibrational frequencies for the ground state, computed in the
harmonic approximation, are also given in Table 1. As was the
case for the bond lengths, we see in general good agreement
with the results of de Jong et al.,55 with discrepancies of about
40 cm-1 for 4C-CCSD and 4C-CCSD(T) numbers, but only
13 cm-1 for the 4C-MP2 ones. The frequency values vary in
accordance with the trend observed for the equilibrium bond
distances: the larger the bond length, the smaller the frequency.
The SO-LR-CCSD results of Réal et al.7 differ by 65 cm-1 from
the 4C-CCSD ones. Although the bond lengths computed by
Straka et al.56 agreed with the 4C-values within 0.001 Å, the
stretching frequencies show discrepancies of about 100 cm-1.
Similarly, for SO-CASPT2 the equilibrium bond distance9 are
nearly identical to the 4C-CCSD(T) value, while the symmetric
stretching frequency is larger by about 90 cm-1. This could
indicate that the methods differ somewhat in the description of
the electron correlation along the internal coordinates, but we
are uncertain as to what extent these differences are intrinsic to
the methods or whether inaccuracies in the determination of
the frequencies play a role. Our experience obtaining frequencies
from polynomial fits near the minima for this system indicates
that these are rather sensitive to the fitting procedure, and lack
of information as to how these have been obtained in the
previous works restricts our ability to test this dependence on
the fit.

3.2. Comparison of Vertical Transitions Computed in
Scalar Relativistic Calculations. We start our discussion of
the excited state calculations by comparing results obtained
without inclusion of spin-orbit coupling, to focus on the
influence of the electron correlation treatment. Results from spin-
free calculations are reported in Table 2. We first note that
differences due to choice of basis set are small: the two sets of
LR-CCSD transition energies differ by at most 1000 cm-1. The
differences due to the choice of correlation method are very
significant, with LR-CCSD transition energies of both the u and

TABLE 1: Calculated U-Oyl Distances Re (Å) and Harmonic Frequencies ωe (cm-1) Computed for Various Correlation
Methods Including All Relativistic Effects

4C 1C

method this work de Jong et al.a Straka et al.b Réal et al.c Pierloot et al.d

ref. Re ωe Re ωe Re ωe Re ωe Re ωe

MP2 1.724 957 1.739 944 1.728 1053
CCSD 1.685 1103 1.697 1041 1.679 1038
CCSD(T) 1.703 1016 1.715 974 1.702 1111
CASPT2 1.708 1103

a Reference 55a. b Spin-free values; ref 56. c Reference 7. d Reference 6.
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g states being about 3000-3500 cm-1 higher than the corre-
sponding IHFSCC numbers (calculated in the same basis and
at the same distance). Since the ground state of the UO2

2+ ion
can be described by a single determinant, the correlation in the
coupled cluster method is in principle equivalent in the spin-
free 4C and 1C frameworks. Thus, the discrepancy must come
from differences in the correlation treatment for the excited
states; more precisely due to the differences between IHFSCC
and LRCC. These differences, which arise from the parametri-
zation of the excited states wave functions, have been addressed
extensively by other authors in previous publications,60-64 but
usually for rather light molecules with relatively few valence
electrons.

LRCC is based upon a linear parametrization in terms of the
ground-state coupled-cluster wave function, corresponding to
a wave operator ΩLRCC ) (1 + Ck) that, upon application to
the ground-state coupled cluster reference wave function, yields
the excited state wave functions

The (IH)FSCC parametrization is based upon the exponential
of the cluster operator S, with a wave operator that is written
as

where S has been subdivided into ground-state amplitudes T
and separate cluster operators for each sector of the Fock space
(S′ ) S(1,0) + S(0,1) + S(1,1)) under consideration. For
ionization potentials and electron affinities, IHFSCC and LRCC
methods are formally equivalent since the expansion of exp (S′)
truncates on the linear term.62,63

For higher sectors such as the (1h,1p) used in this work, both
methods yield different results, since Fock-space methods
contain terms such as S(0,1)S(1,0),62,63 which cancel out the
disconnected terms arising from the linear parametrization in
ΩLRCC to third order or higher.60-63

This feature makes Fock-space methods size-extensive for
both ground and excited states,63,64 and should be the main
reason for the systematic difference of about 3000-3500 cm-1

in excitation energies between the two methods (compare the
first and second column of Table 2). Recent numerical com-
parisons between Fock-space and LRCC approaches by Musial
and Bartlett,65-67 are in qualitative agreement with our results,
with LRCC yielding higher excitation energies than IHFSCC.
In general the differences observed in the molecules considered
then (N2, H2O, CO) are smaller than the ones computed here,
which could be due to the larger number of electrons contribut-
ing to the correlation energy differences in UO2

2+.
Comparison between the coupled cluster methods and the

CASPT2 approach is less straightforward, as both methods
already differ in the parametrization of the ground-state wave
function. This is evident from the results discussed in the
previous section and poses the question how best to compare
vertical excitation energies. We have thereby chosen to present
energies computed at a near-optimal bond length for each
method.

Comparing the first and last column of Table 2, we see that
the CASPT2 energies in most cases overestimate the excitation
energies relative to IHFSCC, but in contrast to the systematic
shift found with LR-CCSD, we also find some transitions
computed up to a few thousand cm-1 lower than with IHFSCC.

The individual CASPT2 energies, particularly for the lower
excited states (up to about 38 000 cm-1), are in rather good
agreement with IHFSCC ones, but this agreement deteriorates
as higher states are considered. In the IHFSCC calculations the
excited states below 41 000 cm-1 are dominated (>95%) by
determinants within the Pm space and excitation energies should
therefore be reliable. Above 41 000 cm-1, contributions from
determinants in the Pi space start to be more significant in
particular for some Π states (such as the a 1Πu at 46126 cm-1),
making the accuracy less certain and suggesting that discrep-
ancies with CASPT2 could also arise from the inclusion of
inaccurate “undressed” states in the IHFSCC calculation, even
though our model space is larger than the largest CAS (12
electrons in 16 orbitals).

Apart from comparing the excitation energies directly, it is
interesting here to analyze the energy differences between

TABLE 2: Spin-Free Vertical Transitions Energies ∆E0 (in cm-1) of UO2
2+ Computed at the IHFSCCSD, LR-CCSD, and

CASPT2 levelsa

IHFSCCSDb LR-CCSDb LR-CCSDc CASPT2d

state character ∆E0 ∆E1 ∆E0 ∆E1 ∆E0 ∆E1 ∆E0 ∆E1

a3∆g σufδ 20972 24378 24441 22477
a3Φg σufφ 23050 (2078) 26461 (2083) 26154 (1713) 23689 (1212)
a1Φg σufφ 27545 (6573) 30975 (6598) 30936 (6495) 27966 (5489)
a1∆g σufδ 30177 (9205) 33911 (9534) 33927 (9486) 31437 (8960)
a1∆u σgfδ 37876 (16904) 41555 (17178) 42100 (17659) 36644 (14167)
a3∆u σgfδ 38339 (17367) 41664 (17287) 42234 (17793) 37283 (14806)
a1Πg πufδ 38776 (17804) 42137 (17759) 43098 (18657) 37733 (15256)
a3Πg πufδ 39029 (18057) 41278 (16900) 42188 (17747) 37181 (14704)
a3Γg πufφ 39611 (18639) 42168 (17790) 42981 (18540) 37563 (15086)
a3Φu σgfφ 40059 (19087) 43368 (18991) 43728 (19287) 38016 (15539)
a1Φu σgfφ 40632 (19660) 44137 (19759) 44487 (20046) 38248 (15771)
a1Γg πufφ 41435 (20463) 43909 (19532) 44686 (20245) 39172 (16695)
a1Πu πgfδ 46126 (25154) 50479 (26101) 51417 (26976) 43192 (20715)
a3Πu πgfδ 46134 (25162) 48491 (24113) 49426 (24985) 42602 (20125)
b1Γu πgfφ 48442 (27470) 51293 (26915) 52022 (27581) 44314 (21837)
b3Γu πgfφ 49144 (28172) 51127 (26749) 52222 (27781) 44784 (22307)

a The energy differences ∆E1 with respect to the first excited state are reported in parentheses. Changes in the ordering of the states are
marked in italics. b Uranium Fægri and oxygen cc-pVTZ basis sets; R(U-Oyl) ) 1.683 Å. c Reference 7; uranium ANO-RCC-QZP and oxygen
ANO-RCC-TZP basis sets; R(U-Oyl) ) 1.683 Å. d Reference 6; uranium DK3 and oxygen ANO-L basis sets; R(U-Oyl) ) 1.708 Å.

|Ψk
LR〉 ) ΩLR|CC〉 ) (1 + Ck) exp(T)|Φ0〉 (1)

|Ψk
FS〉 ) ΩFS|Φ0〉 ) exp(S)|Φ0〉 ) exp(S′) exp(T)|Φ0〉

(2)
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excited states by taking the first excited state (3∆g) as the
reference level, as shown under ∆E1 in Table 2. From those
numbers, it is clear that the IHFSCC and LR-CCSD results are
very much alike, both in terms of energies as in the states
ordering with respect to symmetry. The difference between the
methods appears to mainly arise from a stronger bias for the
ground state in the LR-CCSD framework that leads to a
systematic overestimation of the transition energies. Less
systematic errors are found in comparison with CASPT2, which
yields larger discrepancies in the spacing of the different excited
states (reaching a few thousand wave numbers for higher states).

3.3. Vertical Transition Energies Including Spin-Orbit
Coupling. While instructive for a comparison with other
theoretical work, SF results cannot be compared directly to
experiment. In order to do so we will now switch on spin-orbit
interactions. In this section we will first discuss the tests done
to choose the most suitable “active space” in the SO-IHFSCC
calculations. These tests are all presented in Table 3, noting
that we shall restrict ourselves to excited states lower than
38 000 cm-1 which lie well within the accurate Pm model space.
Apart from the inherently more difficult theoretical description
of higher excited states, we also note that these states form a
very dense part of the spectrum, corresponding to the strong
absorption broadband that is difficult to resolve experimentally.
Thus, the effort in describing them accurately is of limited use
for comparison with experimental work.

3.3.1. Influence of Model Pm and Intermediate Pi Spaces.
The effect of adding the 5d shell to either the occupied Q or
the Pi spaces was explored with the X2C Hamiltonian and turned
out to be relatively unimportant (columns 3 to 5 in Table 3).
Extending the Q virtual space by including all orbitals with
energies ε e 40.00 au did also not bring any significant changes
to the results relative to the default choice (orbitals up to 20
au). This limits the correlation-active space used in subsequent
comparisons to the orbitals with energies between -3 au and
20 au (AS2).

The quality of SO-IHFSCC calculations depends on the
partitioning of the correlation space into the main Pm and
intermediate Pi spaces. With respect to the creation of valence
holes in the occupied orbitals it is possible to extend the minimal
Pm space by including the deeper of the two valence occupied
σ1/2u (see Figure 1 in ref 3) in Pm. Placing this σ1/2u in Pm instead
of in Pi, shifts the six lowest transition energies up by 1700
cm-1 while leaving the other transitions basically unchanged.
This significant change favors the inclusion of the deeper σ1/2u

in the construction of the Pm space. Increasing the P space in
the particle space by including all orbitals with energies up to
0.35 au (as opposed to the base value of 0.08 au) has very little
effect on the excitation energies but was kept as this extension
did not increase calculation times much. The final Pm space is
constructed from orbitals with energies between -1.50 and
-0.30 au, while the buffering Pi space adds determinants build
from holes in the energy ranges [-3.0; -1.50 au] and/or
particles in the energy range [-0.30; 0.35 au].

3.3.2. Influence of Hamiltonian and Basis Set Quality. Our
results indicate that the X2C method complemented with the
atomic mean-field approximation for spin-orbit coupling indeed
provides a very good approximation to the DC Hamiltonian,
with differences below 200 cm-1 upon changing Hamiltonian.
This is important in terms of extending the applicability of
relativistic methods, as this two-component scheme can yield
significant savings in computational time both at the SCF and
the 4-index transformation step prior to the correlated calcula-
tions. In our calculations, however, computational time was
mostly spent in the coupled cluster stage of the calculation,
making the choice for the DC approach appropriate. We thus
continue at this level and next consider the influence of the basis
set choice.

Changing the description of the oxygen atoms from double-�
quality to triple-� hardly affects the eight lowest excitation
energies but does have a significant effect on the energies above
31 000 cm-1, with maximal changes of 4000 cm-1. As a

TABLE 3: SO-IHFSCC Vertical Excitation Energies (in cm-1) of UO2
2+ with Different Active Spaces, Hamiltonians and Basis

Sets. The Energy Range of the Selected Orbitals in the CCSD Part Is between -3 au and 20 au, Except when the 5d Shell Is
Correlated then the Lower Value Is about -7 au. Changes in the Ordering of the States Are Marked in Italics

basis U Dyall DZ Dyall DZ Dyall TZ Fægri TZ

basis O aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVTZ cc-pVTZ

5d frozen in Q in Pi frozen frozen frozen

state Ω X2C Ω X2C 4C-DC 4C-DC Ω 4C-DC composition (wrt. h–p determinants)

1 2g 18777 18536 18571 1g 18789 18984 18506 1g 18610 81% σ1/2uf 3/2u
δ + 15% π1/2uf 3/2u

δ

2 1g 18949 18555 18591 2g 18871 19065 18529 2g 18633 69% σ1/2uf 5/2u
φ + 13% σ1/2uf 3/2u

δ + 11% π1/2uf 5/2u
φ

3 3g 20128 19726 19760 3g 20042 20233 19662 3g 19765 75% σ1/2uf 5/2u
φ + 13% π1/2uf 5/2u

φ

4 2g 21411 21093 21127 2g 21348 21536 20987 2g 21080 45% σ1/2uf 3/2u
δ + 22% σ1/2uf 5/2u

δ + 16% σ1/2uf 5/2u
φ

5 3g 24368 24202 24233 3g 24310 24496 23914 3g 23996 73% σ1/2uf 5/2u
δ + 12% π1/2uf 5/2u

δ + 7% σ1/2uf 7/2u
φ

6 4g 25668 25388 25417 4g 25509 25688 25049 4g 25117 83% σ1/2uf 7/2u
φ + 15% π1/2uf 7/2u

φ

7 3g 28784 28531 28557 3g 28629 28795 28066 3g 28132 73% σ1/2uf 7/2u
φ + 10% π1/2uf 7/2u

φ + 8% σ1/2uf 5/2u
φ

8 2g 30594 30425 28557 2g 30694 30861 30177 2g 30230 56% σ1/2uf 5/2u
δ + 24% σ1/2uf 3/2u

δ + 10% π1/2uf 5/2u
δ

9 0g
- 32121 32132 32124 1g 35216 35423 34544 1g 34556 95% π3/2uf 5/2u

φ

10 0g
+ 32384 32391 32382 4g 36214 36417 35495 4g 35528 97% π3/2uf 5/2u

φ

11 1g 33222 33221 33211 0g
- 36415 36602 35909 0g

- 35840 92% π3/2uf 3/2u
δ

12 1g 34665 34505 34555 3g 36552 36744 35903 3g 35930 97% π3/2uf 3/2u
δ

13 4g 35654 35515 35564 2u 36784 36995 36024 2u 36074 70% σ1/2 gf 3/2u
δ + 25% σ1/2 gf 5/2u

φ

14 3g 35916 35939 35988 0g
+ 36693 36883 36141 0g

+ 36115 92% π3/2uf 3/2u
δ

15 2g 36153 36155 36147 1u 37140 37344 36393 1u 36434 93% σ1/2 gf 3/2u
δ

16 0g
- 36160 36163 36210 2u 37302 37525 36472 2u 36528 69% σ1/2 gf 5/2u

φ + 28% σ1/2gf 3/2u
δ

17 0g
+ 36409 36437 36483 3u 37461 37686 36603 3u 36669 97% σ1/2gf 5/2u

φ
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consequence the ordering of states in this energy region changes.
Increasing the basis set quality on uranium from double to
triple-� (Dyall or Faegri types) is again relatively unimportant
for the lowest excited states (about 300-500 cm-1), but yield
effects of about 1000 cm-1 for the higher states. These tests
indicate that the triple-� basis set size (as used in the spin-free
calculations) is indeed a minimal requirement in order to obtain
accurate spectroscopic data.

3.3.3. Composition of the Excited States. Having defined a
satisfactory computational model (AS2/uranium with a Faegri
TZ basis set/oxygen with a cc-VTZ basis set) we may now
analyze the influence of spin-orbit coupling on the computed
spectrum. The decomposition of the electronic states obtained
in the SO-IHFSCC calculations is given in Table 2 in terms of
the most significant excited determinants with respect to the
ground state. From those numbers it appears that the higher
excited states can be described in terms of one main excitation
while the eight lowest states have some multireference character.
Another interpretation is a difference in spin-orbit induced
mixing in these excited states which increases the π-character
of the σ1/2u orbital relative to the ground state.

The first excited state is sometimes called the luminescent
state due to its long lifetime in the 20 000-26 000 cm-1 energy
range observed in various environments, e.g. in the Cs2UO2Cl4

crystal.68 We calculate this state to be the 1g state, corresponding
to an excitation from the highest σ1/2u orbital to the nonbonding
f 3/2u

δ . This is in agreement with spin-orbit configuration
interaction results.4,69 Pierloot et al.7 and Réal et al.,7 however,
found the 2g state being the lowest. In all calculations the energy
differences between the lowest excited states, and in particular
the 1g and 2g states, are small (less than 1500 cm-1) and
obviously influenced by the quality of the basis sets and electron
correlation treatment. All the excitation from the σ1/2u to the
nonbonding manifolds are located below 31000 cm-1. Above
this threshold, the spectrum is dense and almost continuous.
The states corresponding to an excitation from the bonding
π1/2u, π3/2u orbitals to the nonbonding f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ

orbitals are close to the strongly absorbing states, arising from
the σ1/2g to f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ excitations.

3.4. Excited-State Structures and Comparison between
Methods. The potential energy curves along the symmetric
stretching vibrational mode relative to the ground-state geometry
calculated with the SO-IHFSCC method were investigated and
reported in the Table 4. They are displayed in Figure 1. For
larger bond distances (>1.75 Å), convergence problems appear

in the SO-IHFSCC for the (1h,0p) sector (which corresponds
to calculating the wave functions for ground and excited states
of UO2

3+), that could not be remedied by further extending the
Pi space. For the two states with an equilibrium bond length
above this distance we therefore had to rely on an extrapolation
of the curve using a low order polynomial.

The minima of the excited states are reported in the Table 4.
All of these U-Oyl distances are slightly longer than the ground
state distance. States arising from excitations from the bonding
σ1/2u orbital to the nonbonding f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ have their

optimum bond length at about 1.73 Å, while excitations from
the π1/2u, π3/2u bonding orbitals (last two states reported in Table
4) yield distances of about 1.78 Å, almost 0.1 Å longer than in
the ground state. In general, the SO-IHFSCC bond lengths come
close to the SO-LR-CCSD values,7 about 0.02 Å shorter. This
is significantly shorter than the SO-CASPT2 bond lengths, which
differ up to 0.06 Å from the SO-IHFSCC values.

Table 4 also contains vertical and adiabatic excitation energies
for the three methods in question. Starting with the vertical
excitations, for which the comparison between the methods
should be more reliable than for the adiabatic energies (again
due to the limited precision in the SO-IHFSCC equilibrium
geometries), we observe that the SO-IHFSCC transition energies
are consistently lower by about 4000 cm-1 than the ones
computed with SO-LR-CCSD. Like in the scalar relativistic
comparison, they come closer to the SO-CASPT2 absolute
values, with a difference about 500 cm-1 for the 2g state and
up to 2000 cm-1 for higher excited states.

The adiabatic transitions computed with the various methods
are in line with this picture, but yielding typically one to two
thousand wave numbers smaller values for the lower excited
states and up to five to six thousand wave numbers for the higher
states. It should be noted that the largest differences between
vertical and adiabatic energies occur for states with significant
Π character (π1/2u, π3/2u f f 5/2u

φ ), namely the second 4g and 1g

states, for which one would indeed expect more significant
variations upon geometry changes.

The trends observed here regarding the similarities in the
calculated spectra for the three methods are also seen for our
spin-free results. This provides a strong indication that the
inclusion of spin-orbit coupling a posteriori, as done for LR-
CCSD and CASPT2 within one-component frameworks, is quite
accurate in this case. As a result, the bulk of the deviations is
due to the differences in the correlation treatment, with some
smaller contributions from differences in Hamiltonian and/or

TABLE 4: Equilibrium Geometries (Re, in Å), Vertical (∆E0, in cm-1), and Adiabatic (∆Te
0, in cm-1) Spectrum of the Lowest

Fine Structure Excited States of UO2
2+, Computed at the SO-IHFSCC, SO-LR-CCSD,7 and SO-CASPT26 a

SO-IHFSCCb SO-LR-CCSDc SO-CASPT2d

Ω Re ∆E0 ∆E1 ∆Te
0 ∆Te

1 Re ∆E0 ∆E1 ∆Te
0 ∆Te

1 Re ∆E0 ∆E1 ∆Te
0 ∆Te

1

0g
+ 1.683 0 -18610 0 -17557 1.679 0 -22967 0 -21338 1.708 0 -20104 0 -18888

1g 1.724 18610 0 17557 0 1.732 22967 0 21338 0 1.765 20104 0 18888 0
2g 1.719 18633 23 17834 277 1.743 22789 -178 21826 488 1.782 19195 -909 17227 -1661
3g 1.725 19765 1155 18627 1070 1.743 23897 930 22361 1023 1.783 20265 161 18293 -595
2g 1.722 21080 2470 20082 2525 1.736 25237 2270 24027 2689 1.769 22320 2216 20911 2023
3g 1.720 23996 5386 23073 5516 1.735 27808 4841 26723 5385 1.769 25435 5331 24026 5138
4g 1.727 25117 6507 23857 6300 1.743 29054 6087 27923 6585 1.784 26312 6208 24190 5302
3g 1.730 28132 9522 26679 9122 1.750 32382 9415 30833 9495 1.796 29085 8981 26446 7558
2g 1.731 30230 11620 28757 11200 1.749 34706 11739 32912 11574 1.848 31314 11210 26500 7612
4g 1.772 35528 16918 29991 12434 1.798 39845 16878 32113 10775 1.848 33262 13158 26259 7371
1g 1.778 34556 15946 30680 13123 1.795 39059 16092 32815 11477 1.833 32921 12817 27923 9035

a Here ∆E1 and ∆Te
1 (in cm-1) denote vertical and adiabatic excitations where the origin of the spectrum is taken to be the first excited state.

The minima of the SO-IHFSCC calculations (this work) were obtained by extrapolating the symmetrical stretching mode by second-order
polynomials. Changes in the ordering of the states are marked in italics. b Uranium Fægri and oxygen cc-pVTZ basis sets. c Reference 7;
uranium ANO-RCC-QZP and oxygen ANO-RCC-TZP basis sets. d Reference 6; uranium DK3 and oxygen ANO-L basis sets.
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basis sets. This is further supported upon inspecting the values
of ∆E1 in Tables 2 and 4, since these clearly show very similar
results for SO-IHFSCC (SO a priori) and SO-LR-CCSD (SO a
posteriori), and between the spin-free and spin-orbit calculations.

4. Conclusion

In this work we have investigated the performance of three
wave function based correlation treatments in the calculation
of excitation energies for the uranyl cation. Differences between
the two approaches (perturbation theory and coupled cluster),
and between different coupled cluster approaches (in particular
the linear response and intermediate Hamiltonian Fock-space
coupled cluster) are subtle, with comparisons showing similar
results from a qualitative perspective but with clear quantitative
differences.

The most remarkable quantitative difference between LRCC
and IHFSCC is the systematic upward shift of excitation
energies in the former, compared to the latter. This shift probably
stems from the different parametrization (linear and exponential,
respectively) of the wave functions for the excited states in the
two coupled cluster methods leading to a larger bias for the
ground state in the LRCC calculation. We expect that these
discrepancies between LRCC and (IH)FSCC calculations will
become smaller with the inclusion of higher excitations within
the coupled cluster framework similar to the observations made
in work on lighter molecules.

The often-used CASPT2 approach gives a satisfactory agree-
ment with the lowest IHFSCC excitation energies. For higher
excitations and relative spacings between excited states the
agreement between the two methods larger differences are
observed.

The still significant discrepancies between theoretical methods
reinforces the call for experimental gas-phase spectroscopic data
on the bare uranyl ion to provide a rigorous testing ground for
theoretical methods. Direct comparison with experimental data
obtained for uranyl crystals or solvated uranyl complexes
requires to consider larger chemical models. Work is currently
in progress to compute the spectrum of Cs2UO2Cl4 using
embedding methods, as recently done for the spectrum of
NpO2

2+ in the Cs2UO2Cl4 crystal.36
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(12) Iliaš, M.; Jensen, H. J. Aa. private communication 2009.
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